

Part one

Answer by encircling the letter in front of one of the offered answers. Each correct answer is worth 2 points. A wrong answer is penalized by -0.25 points. Unanswered questions do not alter the score. Using a pencil, encircling of two or more answers or drawing over the answer is penalized by -0.25 points.

- 1. Anne was heating certain substance in a test tube. Which of the following statements about the safety regulations that has to be taken during the experiment is **wrong**?
 - A. The test tube has to be closed with rubber stopper so the liquid does not splash while heated.
 - B. She can hold the test tube with a test tube clamp.
 - C. While heated, the test tube has to be pointed away from Anne.
 - D. It is mandatory for Anne to wear safety glasses.
- 2. Hydrogen forms covalent compounds of the type HX, YH₃, ZH₄ and H₂E with the elements from the second period from the Periodic table. The atomic numbers of the atoms X, Y, Z and E are:
 - A. 17, 13, 14, 16.
 - B. 11, 13, 14, 12.
 - C. 9, 5, 6, 8.
 - D. There are no sufficient data to determine the atomic numbers.
- 3. What is in common for these three particles: ${}^{40}_{18}X \qquad {}^{41}_{19}Y^+ \qquad {}^{42}_{20}Z^{2+}?$
 - A. The number of protons, but not the number of electrons.
 - B. The number of electrons and the number of protons.
 - C. The number of neutrons, but not the number of electrons.
 - D. The number of electrons and the number of neutrons.
- 4. Which elements have the same number of valence electrons?
 - A. Na and K.
 - B. Na and Mg.
 - C. Na and Cl.
 - D. Na and F.
- 5. The chemical formula of silver bromide is:
 - A. Ag_2Br_3 .
 - B. AgBr.
 - C. AgBrO.
 - D. AgBrO₂.

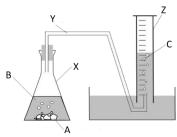
- 6. Which single bond is the most polar one?
 - A. C–O.
 - B. B–F.
 - C. C–F.
 - D. B–Br.
- 7. Which of these series contains formulas of substances that form only polar covalent bonds?
 A. NaCl; HCl; Cl₂.
 B. H₂O; K₂O; CaO.
 - C. NH_3 ; N_2O ; H_2O .
 - D. Na_2O ; NO; N_2 .
- 8. What happens with the collisions of the particles and the rate of the reaction if the temperature of a certain system increases?
 - A. The number of collisions will decline and also the rate of reaction will decline.
 - B. The number of collisions will not change, only particles will gain energy and the rate of the reaction will remain the same.
 - C. The number of collisions will increase, the particles will gain more energy and the rate of the reaction will increase.
 - D. The number of collisions will increase, the particles will gain less energy and the rate of the reaction will decrease.
- 9. Jane has put 1 g of zinc granules in the beaker A and 1 g of zinc powder in beaker B. In each beaker Jane added 100 mL HCl with concentration of 0.1 mol/L. What conclusions can be drawn for the rate of the reaction in beaker A compared to the rate of the reaction in beaker B?
 - A. The rate of the reaction in beaker A is greater due to the lower contact surface of the zinc.
 - B. The rate of the reaction in beaker A is greater due to the higher contact surface of the zinc.

- C. The rate of the reaction in beaker B is greater due to the lower contact surface of the zinc.
- D. The rate of the reaction in beaker B is greater due to the higher contact surface of the zinc.
- 10. Determine the coefficients in front of the participants in the reaction written by the equation: FeCl₃ + MgO → Fe₂O₃ + MgCl₂ A. 4,6,2,6. B. 2,1,1,1. C. 2,3,1,3. D. 6,9,3,9.
- 11. The formula of crystalohydrate of sodium carbonate is:
 A. Na(HCO₃)₂.
 B. Na₂CO₃· (H₂O)₁₀.
 C. Na₂CO₃· 10H₂O.
 D. Na₂CO₄· 10H₂O.
- 12. The products of the reaction CuO + HNO₃ → are:
 A. Cu₂NO₃ + H₂O.
 B. Cu(NO₃)₂ + H₂O.
 - C. $Cu(NO_3)_2 + H_2$.
 - D. $Cu(NO_2)_4 + H_2$.

- 13. Which process **cannot** be used for zinc sulfate production?
 - A. Addition of zinc to sulfuric acid.
 - B. Addition of zinc carbonate to sulfuric acid.
 - C. Addition of zinc oxide to sulfuric acid.
 - D. Addition of aqueous solution of zinc nitrate to aqueous solution of sodium sulfate.
- 14. Which property is not valid for acids?
 - A. They react with bases and always one of the products is water.
 - B. They react with metals and always hydrogen gas is being produced.
 - C. They react with carbonates and always one of the products is carbon dioxide.
 - D. They always turn the color of the litmus paper to red.
- 15. Which of the following salts can be obtained by the acid-base titration method?
 - A. copper(II) sulfate.
 - B. lead(II) sulfate.
 - C. sodium nitrate.
 - D. zinc nitrate.

Part two

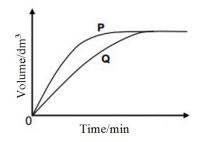
Answer according to the requirements. Answers written by pencil will be marked with 0 points.


1. (Total 4 points) The arrangement for the electrons of the atoms X, Y, Z, R and V is as follows:

Х	Y	Ζ	R	V
2,8	2,8,1	2,8,2	2,8,7	2,8,8

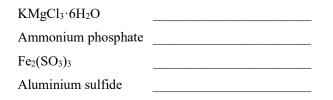
Answer the following questions by writing the symbols of the corresponding elements. Do not write more elements than necessary since every additional wrong answer will result in 0.5 points deduction.

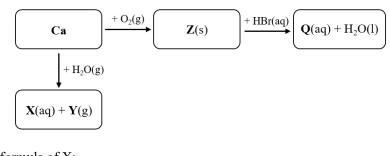
- A. Which atom will lose electron/s most easily?
- B. Which atom will gain electron/s most easily?
- C. Which elements belong to the same group in the Periodic table?
- D. Which elements belong to the same period?


2. (Total 8 points) The apparatus setup given on the figure below is used for studying the rate of hydrogen production when certain amount of magnesium reacts with diluted solution of hydrochloric acid.

- A. Write the balanced equation for the studied reaction. (1)
- B. Write down the names of the laboratory equipment used to set this apparatus: (1.5)
 X: ______, Y: _____, Z: ______
- C. What is the purpose of the vessel marked as Z in this experiment? (1)
- D. Write down the chemical formulas of the substances marked as A, B and C. (1.5)
 - A: _____, B: _____, C: _____
- E. Ivo and Martha, by using the above apparatus, conducted two experiments. The conditions under which the experiments were conducted are given in the table below.

	Experiment 1	Experiment 2				
magnesium	0.1 g powder	0.1 g powder				
hydrochloric acid	0.1 mol/dm^3	0.2 mol/dm^3				
temperature	25 °C	25 °C				


In both experiments, the volume of the hydrogen gas was measured. The obtained results are shown in the plot (graph) below.


Which plot curve, P or Q, represents the results from experiment 2? Use the data from the table and the plot to explain your answer. (2 = 0.5 + 1.5)

Give one reason why the rate of hydrogen production has been reduced at the end of the experiment. (1)

3. (Total 4 points) Write down the chemical formulas or the names of the following compounds:

4. (Total 4 points) Study the scheme and determine the compounds marked as X, Y, Z and Q. Use the coresponding chemical formulas to write the answers.

Chemical formula of X: ______ Chemical formula of Y: ______ Chemical formula of Z: ______ Chemical formula of Q: ______

٩ 1	1 1.00794 +1 1 1 Group		K	Atomic	: Mass -> 1	2.011	-4 +2 +4			ates es are based				Gro			18 He 22
	1	2						011 0 =	12 (exact)			13	14	15	16	17	18
2	6.941 +1 9.012 Li E 3 2-1 4 2-2	¹⁸ ⁺²	E	Atomic N ectron Config		6 2-4		are mass	mbers in par numbers of common iso	the most		^{10,81} +3 5 2-3	12.011 -4 C +2 6 2-4	14.0067 N +1 7 2-5 +5	15.9994 -2 0 8 2-6		
3	11 12 2-8-1 2-8-2	۸g з	4	5	6	Gr 7	oup 8	9	10	11	12	26.98154 +3 AI 13 2-8-3	28.0855 -4 Si +2 14 2-8-4	30.97376 -3 P +3 +5 15 2-8-5	32.065 -2 S +4 +6 16 2.8-6	17 2-8-7	^{39,948} 0 Ar 18 2-8-8
4	39.0983 +1 40.08 K 20 2-8-8-1 20 2-8-8-1 20	Ca Sc	+3 47.867 Ti 22 2-8-10-2	+2 +3 +4 23 2-8-11-2	+2 +3 +4 +5 24 2.8-13-1	^{54,9380} +2 Mn ⁺³ 25 2-8-13-2	55.845 Fe 26 2-8-14-2	27 27 2.8-15-2	28 28 28 28-16-2	^{63.546} Cu ⁺² 29 2-8-18-1	^{65.409} +2 Zn ³⁰ ²⁴⁹⁻¹⁸⁻²	68.723 +3 Ga 31 2-8-18-3	32 2-8-18-4	74.9216 -3 As ⁺³ 33 2-8-18-5	78.96 -2 Se +4 34 2-8-18-6	^{79,904} -1 Br +1 35 2-8-18-7	36 2-8-18-8
5	85.4678 +1 87.62	Sr 88.9059	+3 91224 Zr 40	4 92.9064 Nb	+5 HO 42 2-8-18-13-1		101.07 +5 Ru 44 2-8-18-15-1			47 2-8-18-18-1	11241 +2 Cd 48 2-8-18-18-2	114.818 +3	^{118.71} Sn ⁺²	121.760 -3 Sb+5 51 2-8-18-18-5	^{127,60} Te +4 52 2-8-18-18-6	126.904 -1 +1 +5 53 2-8-18-7	131.29 Xe +2 +4 54 2-8-18-18-8
6	132,905 +1 137.3 CS E		72	+4 180.948 Ta 73 -18-32-11-2	+5 183.84 +6 W 74 -18-32-12-2		190.23 +5 0s +7 76 -18-32-14-2	192 217 +3 4 Ir +4 77 -18-32-15-2	195.08 Pt 78 -18-32-17-1	196.967 +1 Au 79 -18-32-18-1	80 -18-32-18-2	204.383 +1 +3 81 -18-32-18-3	82 -18-32-18-4	^{208,980} Bi ⁺⁵ 83 -18-32-18-5	Po +4 84 -18-32-18-6	⁽²¹⁰⁾ At 85 -18-32-18-7	(222) 0 Rn 86 -18-32-18-8
7	(223) +1 (226) Fr 87 -18-32-18-8-1 88 -18-32	Ra 89 2-18-8-2 -18-32-18		+4 (262) 105	⁽²⁶⁶⁾ 106	⁽²⁷²⁾ 107	108	⁽²⁷⁶⁾ Mt 109	Ds	Rg	⁽²⁸⁵⁾ 112	²⁸⁴ Uut ^{113**}	⁽²⁸⁹⁾ Uuq	⁽²⁸⁸⁾ Uup	Uuh	Üus	Uuo